请输入您要查询的英文单词:

 

单词 riemann–christoffel tensor
释义

Riemann–Christoffel tensorn.

Brit. /ˌriːmənˌkrɪstɒfəl ˈtɛnsə/, U.S. /ˌrimənˌkrɪstɑfəl ˈtɛnsər/, /ˌrimənˌkrɪstɑfəl ˈtɛnsɔr/
Origin: From proper names, combined with an English element. Etymons: proper names Riemann , Christoffel , tensor n.
Etymology: < the name of Georg Friedrich Bernhard Riemann (see Riemann n.) + the name of Erwin Bruno Christoffel (1829–1900), German mathematician + tensor n.
Mathematics.
A fourth-order tensor for expressing the curvature of a Riemann space, vanishing under the condition that space is flat. Also Riemann–Christoffel curvature tensor.
ΘΚΠ
the world > relative properties > number > mathematical number or quantity > tensor > [noun]
Riemann–Christoffel tensor1916
tensor1916
Riemann tensor1922
Ricci tensor1923
Riemann curvature tensor1923
1916 Sci. Abstr. A. 19 316 The formation of tensors by differentiation is shown, and a special sub-section is devoted to the Riemann-Christoffel tensor.
1918 A. S. Eddington Rep. Relativity Theory Gravitation iii. 40 The required equations of the law of gravitation must, therefore, include the vanishing of the Riemann–Christoffel tensor as a special case.
1943 Trans. Amer. Inst. Electr. Engineers 62 27/1 The Riemann–Christoffel curvature tensor kαβγδ.
1956 G. C. McVittie Gen. Relativity & Cosmol. ii. 30 The Ricci tensor..is obtained by contraction from the Riemann–Christoffel tensor.
1974 Encycl. Brit. Micropædia VIII. 580/2 The Riemannian curvature is obtained by first contracting the Riemann–Christoffel curvature tensor.
2001 S. Kaufman tr. J. C. Pecker Understanding Heavens viii. 832 The distribution of curvature in space-time is described by another tensor, the Riemann-Christoffel tensor..or in its condensed form, the Ricci tensor.
This entry has been updated (OED Third Edition, June 2010; most recently modified version published online March 2022).
<
n.1916
随便看

 

英语词典包含1132095条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2022 Newdu.com All Rights Reserved
更新时间:2025/1/12 2:40:24