Kolmogorov-Sinai invariant

Kolmogorov-Sinai invariant

[‚kȯl·mə′gȯ·rȯf ′sī‚nī in¦ver·ē·ənt] (mathematics) An isomorphism invariant of measure-preserving transformations; if T is a measure-preserving transformation on a probability space, the Kolmogorov-Sinai invariant is the least upper bound of the set of entropies of T given each finite partition of the probability space. Also known as entropy of a transformation.