adrenal gland
adrenal gland
adrenal gland
adre′nal gland`
n.
ad·re·nal gland
(ə-drē′nəl)Noun | 1. | adrenal gland - either of a pair of complex endocrine glands situated near the kidney |
单词 | adrenal gland | |||
释义 | adrenal glandadrenal glandadrenal glandadre′nal gland`n. ad·re·nal gland(ə-drē′nəl)
adrenal glandadrenal gland(ədrēn`əl) orsuprarenal gland(so͞oprərēn`əl), endocrine gland (see endocrine systemendocrine system, body control system composed of a group of glands that maintain a stable internal environment by producing chemical regulatory substances called hormones. ..... Click the link for more information. ) about 2 in. (5.1 cm) long situated atop each kidney. The outer yellowish layer (cortex) of the adrenal gland secretes about 30 steroid hormones, the most important of which are aldosteronealdosterone , steroid secreted by the cortex of the adrenal gland. It is the most potent hormone regulating the body's electrolyte balance. Aldosterone acts directly on the kidney to decrease the rate of sodium-ion excretion (with accompanying retention of water), and to ..... Click the link for more information. and cortisolcortisol or hydrocortisone, steroid hormone that in humans is the major circulating hormone of the cortex, or outer layer, of the adrenal gland. Like cortisone, cortisol is classed as a glucocorticoid; it stimulates liver glycogen formation while it decreases the rate ..... Click the link for more information. . Cortisol regulates carbohydrate, protein, and fat metabolism, and its secretion is controlled by the output of adrenocorticotropic hormoneadrenocorticotropic hormone , polypeptide hormone secreted by the anterior pituitary gland. Its chief function is to stimulate the cortex of the adrenal gland to secrete adrenocortical steroids, chief among them cortisone. ..... Click the link for more information. (ACTH) from the pituitary gland. Aldosterone regulates water and salt balance in the body; its secretion is only slightly influenced by the pituitary. Steroid hormones also counteract inflammation and allergies and influence the secondary sex characteristics to a limited degree. The adrenal cortex controls metabolic processes that are essential to life and if it ceases to function death ensues within a few days. Artificial synthesis of the steroid hormones has made it possible to treat many conditions related to underactivity of the adrenal cortex, e.g., Addison's diseaseAddison's disease [for Thomas Addison], progressive disease brought about by atrophy of the outer layer, or cortex, of the adrenal gland; it is also called chronic adrenocortical insufficiency. ..... Click the link for more information. . The inner reddish portion (medulla) of the adrenal gland, which is not functionally related to the adrenal cortex, secretes epinephrineepinephrine , hormone important to the body's metabolism, also known as adrenaline. Epinephrine, a catecholamine, together with norepinephrine, is secreted principally by the medulla of the adrenal gland. ..... Click the link for more information. (adrenaline) and norepinephrine. The release of these hormones is stimulated when an animal is excited or frightened, causing increased heart rate, increased blood flow to the muscles, elevated blood sugar, dilation of the pupils of the eyes, and other changes that increase the body's ability to meet sudden emergencies. Adrenal glandA complex endocrine organ in proximity to the kidney. Adrenal gland tissue is present in all vertebrates. The adrenal consists of two functionally distinct tissues: steroidogenic cells and catecholamine-secreting cells. While “adrenal” refers to the gland's proximity to the kidney, significant variation exists among vertebrates in its anatomic location as well as the relationship of the two endocrine tissues which make up the gland. In mammals, steroidogenic cells are separated into distinct zones that together form a cortex. This cortical tissue surrounds the catecholamine-secreting cells, constituting the medulla. In most other vertebrates, this unique anatomic cortical-medullary relationship is not present. In species of amphibians and fish, adrenal cells are found intermingling with kidney tissue, and the steroidogenic cells are often termed interrenal tissue. DevelopmentThe adrenal gland forms from two primordia: cells of mesodermal origin which give rise to the steroid-secreting cells, and neural cells of ectodermal origin which develop into the catecholamine-secreting tissue (also known as chromaffin tissue). In higher vertebrates, mesenchymal cells originating from the coelomic cavity near the genital ridge proliferate to form a cluster of cells destined to be the adrenal cortex. During the second month of human development, cells of the neural crest migrate to the region of the developing adrenal and begin to proliferate on its surface. The expanding cortical tissue encapsulates the neural cells forming the cortex and medulla. In mammals, three distinct zones form within the cortex: the outermost zona glomerulosa, the middle zona fasiculata, and the inner zona reticularis. The glomerulosa cells contain an enzyme, aldosterone synthase, which converts corticosterone to aldosterone, the principal steroid (mineralocorticoid) secreted from this zone. The inner zones (fasiculata and reticularis) primarily secrete glucocorticoids and large amounts of sex steroid precursors. In many lower vertebrates, the two tissues form from similar primordia but migrate and associate in different ways to the extent that in some cases the two tissues develop in isolation from each other. Comparative anatomyWhile the paired adrenals in mammals have a characteristic cortical-medullary arrangement with distinct zonation present in the cortex, such distinctions are lacking in nonmammalian species. In more primitive fishes, chromaffin cells form in isolation from steroidogenic tissue. A general trend is present, however, throughout vertebrates for a closer association of chromaffin and steroidogenic tissues. Zonation in steroidogenic tissue is largely confined to mammals, although suggestions of separate cell types have been postulated in birds and in some other species. Comparative endocrinologyHormones are secreted from the cells of both the medulla and the cortex. Chromaffin cellsIn all vertebrates, chromaffin cells secrete catecholamines into circulation. In most species, the major catecholamine secreted is epinephrine, although significant amounts of norepinephrine are released by many animals. Some dopamine is also secreted. No phylogenetic trend is obvious to explain or predict the ratio of epinephrine to norepinephrine secreted in a given species. A given species may release the two catecholamines in different ratios, depending on the nature of the stimulus. The great majority of the norepinephrine in circulation actually originates from that which is released from non-adrenal sympathetic nerve endings and leaks into the bloodstream. In addition to catecholamines, chromaffin cells secrete an array of other substances, including proteins such as chromogranin A and opioid peptides. See Epinephrine Biologic effects of catecholamines are mediated through their binding to two receptor classes, α- and β-adrenergic receptors. Further examination of these receptors has revealed that subclasses of each type exist and likely account for the responses on different target tissues. In general, biologic responses to catecholamines include mobilization of glucose from liver and muscle, increased alertness, increased heart rate, and stimulation of metabolic rate. Steroid hormonesIn broad terms, most steroids secreted by adrenal steroidogenic cells are glucocorticoids, mineralocorticoids, or sex hormone precursors. However, these classes have been established largely on the basis of differential actions in mammals. The principal glucocorticoids are cortisol and corticosterone, while the main mineralocorticoid is aldosterone. This division of action holds for mammalian species and likely for reptiles and birds. In other vertebrates, such as fish and amphibians, steroids from the interrenal tissue do not show such specialized actions; instead, most show activities of both glucocorticoid and mineralocorticoid type. Mammals, birds, reptiles, and amphibians secrete cortisol, corticosterone, and aldosterone. The ratios of the two glucocorticoids vary across species; in general, corticosterone is the more important product in nonmammalian species. Even within mammals, a large variation exists across species, due to the relative ratio of cortisol to corticosterone from the adrenal cortex. Effects of adrenal-derived steroids in lower vertebrates involve a diverse array of actions, including control of distribution and availability of metabolic fuels such as glucose, and regulation of sodium and extracellular fluid volume. In nonmammalian vertebrates, corticosterone, cortisol, and aldosterone possess mineralocorticoid effects. Other areas where adrenal steroids likely contribute to biologic processes include control of protein, fat, and carbohydrate balance; reproduction; and growth and development. See Steroid adrenal gland[ə′drēn·əl ‚gland]Adrenal glandadrenal[ah-dre´nal]The physiologic effects of the glucocorticoids promote the metabolic breakdown or anabolism of carbohydrates, proteins, and fats. Cortisol increases the rate of gluconeogenesis by the liver, decreases the utilization of glucose by the cells, reduces cellular protein and enhances utilization of amino acids by the liver, and promotes mobilization of fatty acids from adipose tissue into the plasma. The net effect of these actions is to make these noncarbohydrate nutritive elements readily available for energy. The regulation of cortisol secretion involves a complex closed-loop negative feedback system. Initially, the hypothalamus reacts to physical or psychogenic stress by secreting corticotropin-releasing hormone (CRH), which is carried to the anterior pituitary gland (adenohypophysis) via the hypothalamic-hypophyseal portal system. In response to the presence of CRH, the adenohypophysis secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to release cortisol. Cortisol then initiates a series of metabolic activities which help to relieve the physiologic effects of stress. Cortisol inhibits both release of CRH from the hypothalamus and of ACTH from the adenohypophysis. This exerts a negative feedback effect; high serum cortisol levels inhibit further production of cortisol. Thus, during times of relative calm when the body is not experiencing abnormal stress, the cortisol level returns to normal. Another factor that influences the secretory rates of CRH, ACTH, and cortisol is a biologic clock mechanism that establishes a cyclic pattern of signals from the hypothalamus. This is a 24-hour cycle that has its peak right after completion of the major portion of a night's sleep, usually around 4 or 5 AM. About 12 hours later, the blood level of cortisol is at its lowest. This cycle is dependent on sleeping patterns; therefore, if a person changes the pattern and sleeps in the daytime, the cycle of hormonal levels changes accordingly. This information is significant in testing for cortisol levels as a means of diagnosing a disorder of the endocrine system. When blood is drawn for testing, the specimen should be clearly labeled as to the precise time it was taken. gland[gland]The endocrine glands, or ductless glands, discharge their secretions (hormones) directly into the blood; they include the adrenal, pituitary, thyroid, and parathyroid glands, the islands of Langerhans in the pancreas, the gonads, the thymus, and the pineal body. The glands" >exocrine glands discharge through ducts opening on an external or internal surface of the body; they include the salivary, sebaceous, and sweat glands, the liver, the gastric glands, the pancreas, the intestinal, mammary, and lacrimal glands, and the prostate. The lymph nodes" >lymph nodes are sometimes called lymph glands but are not glands in the usual sense. su·pra·re·nal gland[TA]adrenal glandAdrenal GlandEither of a pair of small flat triangular glands which lie atop or adjacent to each kidney and which are composed of(1) The outer adrenal cortex, an endocrine gland composed of three layers, from the outermost zona glomerulosa, which produces mineralocorticoids, primarily aldosterone that regulates blood pressure, the middle zona fasciculata, which produces glucocorticoids, primarily cortisol, and the inner zona reticularis, which produces androgens, primarily DHEA and DHEA-S, and (2) The central adrenal medulla, a neuroendocrine "organ" which produces catecholmines (epinephrine/adrenaline & norepinephrine/noradrenaline) in response to stress signals from the peripheral nervous system. Blood supply Arterial • Superior suprarenal artery from the inferior phrenic artery • Middle suprarenal artery from the abdominal aorta • Inferior suprarenal artery from the renal artery Venous • Right suprarenal vein to the inferior vena cava • Left suprarenal vein to the left renal vein or the left inferior phrenic vein su·pra·re·nal gland(sū'pră-rē'năl gland) [TA]Synonym(s): adrenal gland, epinephros, paranephros. adrenal glandEmbryologyEach adrenal gland is a two-part organ composed of an outer cortex and an inner medulla. The cortex arises in the embryo from a region of the mesoderm that also gives rise to the gonads. The medulla arises from ectoderm, which also gives rise to the sympathetic nervous system. AnatomyThe entire gland is enclosed in a tough connective tissue capsule from which trabeculae extend into the cortex. The cortex consists of cells arranged into three zones: the outer zona glomerulosa, the middle zona fasciculata, and the inner zona reticularis. The cells are arranged in cords. The medulla consists of chromaffin cells arranged in groups or in anastomosing cords. The two adrenal glands are retroperitoneal, each embedded in perirenal fat above its respective kidney. In an adult, the average weight of an adrenal gland is 5 g (range: 4 to 14 g). PhysiologyThe adrenal medulla synthesizes and stores three catecholamines: dopamine, norepinephrine, and epinephrine. The chief effects of dopamine are the dilation of systemic arteries, increased cardiac output, and increased flow of blood to the kidneys. The primary action of norepinephrine is constriction of the arterioles and venules, resulting in increased resistance to blood flow, elevated blood pressure, and slowing of the heart. Epinephrine constricts vessels in the skin and viscera, dilates vessels in skeletal muscle, increases heart rate, dilates the bronchi by relaxing bronchial smooth muscle, increases the conversion of glycogen to glucose in the liver to increase the blood glucose level, and diminishes activity of the gastrointestinal system. The three catecholamines are also produced in other parts of the body. The adrenal medulla is controlled by the sympathetic nervous system and functions in conjunction with it. It is intimately related to adjustments of the body in response to stress and emotional changes. Anticipatory states tend to bring about the release of norepinephrine. More intense emotional reactions, esp. those in response to extreme stress, tend to increase the secretion of both norepinephrine and epinephrine; epinephrine is important in mobilizing the physiological changes that occur in the “fight or flight” response to emergency situations. The cortex synthesizes three groups of steroid hormones from cholesterol. These are 1) glucocorticoids (cortisol, corticosterone), which regulate the metabolism of organic nutrients and have an anti-inflammatory effect; 2) mineralocorticoids (aldosterone, dehydroepiandrosterone), which affect metabolism of the electrolytes sodium and potassium; and 3) androgens and estrogens (estradiol), which contribute to body changes at puberty. See: aldosterone; cortisol; steroid PathologyHypersecretion of adrenal cortical hormones results in Cushing syndrome. Hypersecretion of aldosterone results in a surgically correctable form of hypertension (aldosteronism). Adrenocortical insufficiency may be acute or chronic; acute insufficiency of adrenal hormones produces circulatory shock, while chronic insufficiency results in Addison disease. See: Addison disease; aldosteronism; Cushing syndrome; pheochromocytoma adrenal glandan endocrine organ consisting of a medulla (central part) secreting ADRENALINE and NORADRENALINE, and a cortex (outer zone) secreting ADRENAL CORTICAL HORMONES. The two parts are closely associated in mammals, but are sometimes separated into distinct organs in other vertebrates, e.g. fish. The activity of the medulla is controlled by the sympathetic nervous system, and that of the cortex by ADRENOCORTICOTROPIC HORMONE secreted by the pituitary gland. In mammals there is a pair of adrenal glands situated anteriorly to the kidneys; other vertebrates have more than two adrenals.Adrenal glandsu·pra·re·nal gland(sū'pră-rē'năl gland) [TA]Synonym(s): adrenal body, adrenal gland. adrenal gland
Synonyms for adrenal gland
|
|||
随便看 |
|
英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。