an open quadric surface without a center. There are two types of paraboloids—elliptic and hyperbolic (Figure 1). Paraboloids are two of the five main types of quadric surfaces. The intersection of a hyperbolic paraboloid with a plane is
Figure 1. Paraboloids: (a) elliptic, (b) hyperbolic
a hyperbola, a parabola, or a pair of lines. Two rectilinear generators pass through each point of a hyperbolic paraboloid, which consequently is a ruled surface. In contrast to a hyperbolic paraboloid, an elliptic paraboloid does not intersect every plane in space. When it does intersect a plane, the intersection is either an ellipse or a parabola. In an appropriate system of coordinates the equation for an elliptic paraboloid has the form
and the equation for a hyperbolic paraboloid has the form
Here, p > 0 and q > 0.