tumor
tu·mor
T0408900 (to͞o′mər, tyo͞o′-)tu•mor
(ˈtu mər, ˈtyu-)n.
tu·mor
(to͞o′mər)Noun | 1. | ![]() |
单词 | tumor | |||
释义 | tumortu·morT0408900 (to͞o′mər, tyo͞o′-)tu•mor(ˈtu mər, ˈtyu-)n. tu·mor(to͞o′mər)
tumor→ 肿瘤zhCNtumortumor:see neoplasmneoplasmor tumor, tissue composed of cells that grow in an abnormal way. Normal tissue is growth-limited, i.e., cell reproduction is equal to cell death. Feedback controls limit cell division after a certain number of cells have developed, allowing for tissue repair ..... Click the link for more information. . Tumor(also neoplasm), the excessive, pathological growth of plant, animal, or human tissues in which the cells qualitatively change and lose their capacity for differentiation. Tumor cells transmit their pathological properties to their offspring and continue to multiply even after the causative factors cease to act. In contrast to pseudotumors, which result from injury, inflammation, or circulatory disturbance, true tumors enlarge as a result of multiplication of their own cells. True tumors include leu-kemias. Oncology, which is the study of tumors, has devoted most attention to tumors in man, mice, rats, hamsters, and dogs. For purposes of clinical and morphological description, a distinction is made between benign and malignant tumors. Benign tumors enlarge to distend and sometimes also compress the surrounding tissues, whereas malignant tumors invade and destroy the surrounding tissues while injuring the blood and lymphatic vessels. Tumor cells can be carried throughout the body in the bloodstream or in the lymph and can settle in various organs and tissues, forming metastases. Benign tumors do not metastasize, but they may be dangerous because of their location, for example, they can compress vital tissues when they develop in the brain. The occurrence, rate, and degree of metastasis depend on the immunobiological state of the organism. The first sign of tumor growth in a tissue is the appearance of a small number of cells that exhibit a tendency toward uncontrolled division. Tumor growth proceeds through stages of irregular hyperplasia, or a disorderly increase in the number of cells, focal growth, benign growth, and malignant growth; the stages immediately preceding malignancy—focal and benign growth—are called precancerous. The evidence of many clinical observations and animal experiments confirms that every cancer develops through a precancerous stage. Tumor development is progressive, that is, it proceeds through stages of increasing malignancy. The autonomy of the tumor increases in that the tumor becomes more independent of the bodily systems that normally control cell division. The parenchyma of a tumor consists of tumorous tissue, while the stroma forms from surrounding connective tissue. A tumor is named by adding the Greek suffix -oma to the name of the tissue from which it originated. For example, a tumor from cartilage is a chondroma and a tumor from muscle a myoma. Some tumors have special names. For instance, a malignant tumor from connective tissue is called a sarcoma (from Greek sarx, gen. case sarkos, “meat”) because in cross section its tissue resembles fish meat. A malignant epithelioma is called a carcinoma (from Greek karkinos, “cancer”). In many countries the word “cancer” is applied to all malignant tumors regardless of the source. Soviet oncologists use “cancer” to refer only to malignant tumors of epithelial origin. Some tumors are named after the organ or organ part from which they originate; for example, an insuloma is a tumor from the islands of Langerhans, in the pancreas. Experimental studies played a major role in elucidating the nature and causes of tumors. The autonomous growth of tumors was demonstrated by transplantation experiments in which tumors from one animal survived and grew for many years on secondary animal hosts. Tumor strains, consisting of tumors that are repeatedly transplanted over a long period of time, are used to study the properties of tumors and to develop and test methods of treating tumors, especially chemotherapeutic methods. Modern experimental oncology also makes use of explanation studies, in which tumorous tissues and cells are excised for cultivation outside the organism. Experimental studies showed that many tumors can be caused by viruses. However, cancer and most other tumors are not considered infectious in the ordinary sense of the word. Evidence shows that individuals who work at jobs that involve prolonged contact with certain substances may develop cancer; for example, chimney sweeps are prone to skin cancer, and uranium miners tend to develop cancer of the lungs. These observations led to experiments that showed that several substances belonging to different classes of chemical compounds may cause cancer and other tumors. These substances are called carcinogens. Tumors can be caused not only by exogenous substances, that is, by those that appear in the environment, but also by endogenous carcinogens, which originate in the organism itself. Endogenous carcinogens can form, for example, as a result of disturbances of protein metabolism in which derivatives of the amino acid tryptophan or tyrosine are present and as a result of disturbances in steroid metabolism, especially disturbances in the metabolism of steroid sex hormones. Many human tumors have a dyshormonal origin, including those of the breast, prostate, uterine body, uterine muscles, and, occasionally, ovaries and testicles. In addition to being caused by viruses and chemicals, tumors can be caused by radiation. Thus, tumors may result from a variety of physical, chemical, and biological factors. The internal mechanisms by which these factors operate have not been fully explained. The systemic reaction of the body strongly influences the origin and development of tumors. This reaction depends on both genotype and environmental factors. Some rare forms of tumors and precancerous states are definitely inheritable in man, for example, retinoblastoma and xeroderma pigmentosum. The latter readily becomes malignant after exposure to ultraviolet radiation. However, hereditary transmission of most tumors has not been demonstrated. Hereditary factors mainly predispose an organism to tumor growth, by altering the body’s response to tumorigenic influences. The general condition of the body, which is dependent on such factors as nutrition, plays a decisive role in the realization of the specific effect of these influences. Tumors are clinically diagnosed by instrumental methods, including roentgenography and endoscopy, and by morphological, immunological, and chemical methods. Early diagnosis is essential because treatment is most effective in the early stages of the disease. A conclusive diagnosis is often based on biopsy results. Tumors are treated with surgery, radiation therapy, and chemotherapy, and combinations of these methods. The location, structure, and stage of development of the tumors are taken into account when selecting a method. Surgery is the most important method in the treatment of tumors of the alimentary canal; radiation is used against tumors of the lower lip, skin, and uterine cervix; a combination of surgery, radiation, and chemotherapy is used with breast cancer. Chemotherapy, the newest approach, is effective as an independent method in, for example, chorionepithelioma, or choriocarcinoma, a malignant tumor of the uterine body in young women. Epidemiological studies are of value in oncology and tumor prevention. Statistics on cancer morbidity and mortality rates are gathered in many countries. In the USSR, patients with malignant tumors must be registered. This information is very helpful in studying the prevalence of tumors in different parts of the country and in detecting possible etiological relationships between a particular oncological disease and natural or ethnographic factors. Malignant tumors are the second leading cause of death in the economically developed countries, including the USSR, the USA, Great Britain, France, and Sweden. In descending order of frequency of occurrence, the most common cancers in the majority of countries are those of the lung, uterus, female breast, and male esophagus. Malignant tumors mostly affect older persons. An increase in the average life expectancy and improved methods of diagnosis may explain the apparent increase in tumor morbidity and mortality that has been observed. Special correction factors in the form of standardized indexes are used in the statistical analysis of oncological data. Worldwide statistics revealed significant unevenness in the distribution of the various types of tumors among different nations, different peoples, and different isolated populations. Skin cancer, especially on exposed parts of the body, was found to occur most frequently in hot countries, as a result of excessive Ultraviolet radiation. Cancer of the mouth, tongue, and gums is prevalent among Indians, Pakistanis, and inhabitants of some other Asian countries as a result of these people’s harmful habit of chewing betel. Penile cancer is common in some Asian and South American countries, probably because of careless personal hygiene. Epidemiological studies have shown that the incidence of cancer in a particular geographical location changes when the living conditions of the people change. For example, among Englishmen who migrate to Australia, the USA, or South Africa, lung cancer is more common than among the indigenous populations of these countries but less common than in the general population of Great Britain itself. Stomach cancer is more widespread in Japan than in the United States. The Japanese who permanently reside in the United States, for example, in San Francisco, are more prone to stomach cancer than other American citizens but are less prone to stomach cancer and at a later age than their fellow countrymen in Japan. Tumors can either be prevented from occurring (hygienic prevention) or from developing (clinical prevention). To prevent the occurrence of tumors, environmental conditions can be improved by completely or partially eliminating the carcinogens that constitute a potential threat to man. It has been well established that cancer develops more slowly and less frequently in environments that contain smaller amounts of carcinogen. Early diagnosis and healing of precancers is essential in curtailing tumor development. The principal method of clinical prevention is systematic mass screening of the entire population and clinical observation of individual groups. Special methods are employed to prevent certain tumors. For example, regular cytological examination of vaginal smears permits prompt detection of cancer of the uterine cervix, and careful self-examination is an effective means of preventing breast cancer. REFERENCESUspekhi v izuchenii raka, vols. 1–10. Edited by L. M. Shabad. Moscow, 1955–71. (Translated from English.)Rukovodstvo po obshchei onkologii. Edited by N. N. Petrov. Leningrad, 1961. Zil’ber, L. A. Virusogeneticheskaia teoriia vozniknoveniia opukholei. Moscow, 1968. Shabad, L. M. Endogennye blastomogennye veshchestva. Moscow, 1969. Shabad, L. M. O tsirkuliatsii kantserogenov v okruzhaiushchei srede. Moscow, 1973. Klinicheskaia onkologiia, vols. 1–2. Edited by N. N. Blokhin and B. E. Peterson. Moscow, 1971. L. M. SHABAD In animals. Tumors are commonly found in all species. Their frequency increases with age and is under the influence of such parameters as species, breed, and climate. Tumors are especially common in dogs and chickens. Similar tumors in different animals are morphologically and clinically identical, but the frequency with which individual organs are affected varies. For example, mammary tumors are extremely rare in cows but are quite common in dogs, accounting for 35–40 percent of all canine tumors. Pulmonary fibromatosis frequently arises in sheep, and tumors of the eye are frequent in cattle. Stomach cancer is exceptionally rare in animals. Animal tumors are diagnosed by clinical examination, which includes cytological and roentgenological studies. The principal method of treatment is surgery, which is sometimes combined with chemotherapy and the administration of hormones. P. F. TEREKHOV In plants. Plant tumors may be caused by fungi, bacteria, viruses, insects, nematodes, or low temperature. They are biologically distinct from animal tumors and arise as a result of hyperplasia (intensified division) or hypertrophy (intensified growth) of plant cells. Plant tumors generally appear on roots, tubers, stems, and, less commonly, leaves. Typical examples are root canker of fruit trees, potato canker, and beet tuberculosis. Tumors impede the flow of nutrient solutions, especially when the main root or root collar is affected. Diseased plants often die prematurely. Control measures are aimed at eliminating the underlying causes of the tumors. tumor[′tü·mər]tumour(US), tumortumortumor[too´mor]Tumors are classified in a number of ways, one of the simplest being according to their origin and whether they are malignant or benign. Tumors of mesenchymal origin include fibroelastic tumors and those of bone, fat, blood vessels, and lymphoid tissue; they may be benign or malignant (sarcoma). Tumors of epithelial origin are found in glandular tissue and such organs as the breast, stomach, uterus, or skin; they also may be either benign or malignant (carcinoma). Mixed tumors contain different types of cells derived from the same primary germ layer, and teratomas" >teratomas contain cells derived from more than one germ layer; both kinds may be benign or malignant. ![]() tu·mor(tū'mŏr), Avoid the jargonistic use of this word as a synonym of neoplasm.tumor(to͞o′mər, tyo͞o′-)tumortu·mor(tū'mŏr)Synonym(s): tumour. tumor(too'mor) [L. tumor, a swelling]adenomatoid odontogenic tumorAdenoameloblastoma.![]() brain tumorNeoplastic brain tumors may be benign or malignant. Malignant brain lesions may be primary or secondary, resulting from metastatic spread of other cancers. Primary malignant brain tumors make up from 10% to 30% of adult cancers and about 20% in children, but any of these tumors may occur at any age. Incidence in children is usually greatest before age 12, with astrocytomas, medulloblastomas, ependymomas, and brain stem gliomas being most common. In adults the most common tumors are gliomas and meningiomas, usually occurring supratentorially. Other malignant tumor types are oligodendrogliomas and acoustic neuromas (Schwannomas). Most malignant brain tumors are metastatic, with 20% to 40% of patients with cancer developing brain metastasis. The cause of primary brain cancers is unknown; however, one known environmental risk is exposure to ionizing radiation. Cell phone use has been implicated in acoustic neuromas. Central nervous system changes occur as the lesions invade and destroy tissue, and, because the tumors compress the brain, cranial nerves, and cerebral blood vessels, the compression causes cerebral edema and increased intracranial pressure (ICP). Most clinical signs are due to the increased ICP, but signs and symptoms may vary due to the type of tumor, its location, and the degree and speed of invasion. Usually the onset of symptoms is insidious, with brain tumors frequently misdiagnosed. DiagnosisThe patient is evaluated for neurological deficits (headache, mental activity changes, behavioral changes, weakness, sensory losses, or disturbances of vision, speech, gait, or balance). The patient is monitored for seizures and increased ICP. Diagnostic tools include skull x-rays, brain scan, CT scan, MRI, cerebral angiography, and EEG. Lumbar puncture demonstrates increased pressure and protein levels, decreased glucose levels, and (sometimes) tumor cells in the cerebrospinal fluid (CSF). Definitive diagnosis is by tissue biopsy performed by stereotactic surgery. TreatmentTreatment includes excision if the tumor is resectable, and size reduction if he tumor is not respectable; relieving cerebral edema, reducing ICP, and managing other symptoms; and preventing further neurologic damage. Treatment is determined by the tumor’s histology, radiosensitivity, and location. Functional MRI can map the brain function surrounding a tumor to help design a surgical approach that removes the tumor while avoiding damage to areas critical for normal functioning. Surgery, radiation, chemotherapy, and/or decompression for increased ICP with diuretics, corticosteroids, or sometimes ventroatrial or ventroperitoneal CSF shunting. Focused and computerized robotic radiation methods such as the Gamma Knife and Cyberknife permit delivery of more radiation to the tumor and less to surrounding normal tissue. Patient careRadiation therapy can cause inflammation; therefore the patient is monitored for increasing ICP. If radiation is to be used after surgery, it will be delayed until the surgical wound has healed. However, even after local healing occurs, radiation can break down the wound; therefore the area of the incision must be assessed for infection and sinus formation. Chemotherapy for malignant brain tumors includes use of nitrosureas (BCNU, CCNU, procarbazine) to help break down the blood-brain barrier allowing entrance of other chemotherapy agents. Antiemetics are provided before and after chemotherapy to minimize nausea and prevent vomiting. The patient is assessed over the following weeks for bone marrow suppression, is advised to report signs of infection or bleeding, and is to avoid contact with crowds and people with respiratory infections. The oral agent temozolomide (Temodar) crosses the blood-brain barrier and is usually well tolerated by the patient. Intrathecal or intra-arterial administration helps increase drug action. Convection-enhanced delivery systems infuse the antitumor agent directly into the brain, bypassing the blood-brain barrier, to pump drugs slowly through 2 to 4 implanted catheters to where a tumor was removed, to attach to and kill remaining tumor cells, and to shrink a tumor before surgery. A disc-shaped drug wafer can be implanted during surgery to deliver chemotherapy directly to the tumor. MRI spectroscopy reveals the physiology of treated tumors to differentiate dead tissue from an actively growing tumor. The patient must be monitored closely for changes in neurologic status and increases in ICP. A patent airway must be maintained and respiratory changes monitored. The patient's safety must be ensured. Temperature must be monitored closely. Steroids and osmotic diuretics are administered as prescribed. Fluid intake may be restricted to 1500 ml/24 hr. Fluid and electrolyte balance is monitored to prevent dehydration. Stress ulcers may occur; therefore the patient is assessed for abdominal distention, pain, vomiting, and tarry stools. Stools are tested for occult blood. Antacids and anti-histamine-2 agents are administered as prescribed. For postcraniotomy surgery, all general patient care concerns apply. General neurologic status and ICP remain the assessment priorities. Positioning of the patient after surgery depends on the procedure: after supratentorial craniotomy, the head of the bed should be elevated 30° and the patient positioned on the side to promote venous drainage, reduce cerebral edema, allow drainage of secretions and prevent aspiration. After infratentorial craniotomy, the patient should be kept flat for 48 hr but log-rolled side to side every 2 hr to minimize complications from immobility. Because brain tumors and their treatment frequently result in residual disabling neurologic deficits, a rehabilitation program should be started early. Physical and occupational therapists help the patient maintain independence and quality of life and provide aids for self-care and mobility. If the patient is aphasic or develops dysphagia, a speech pathologist must be consulted. Depression is common, and psychological consultation for behavioral or drug therapies may be helpful. Emotional support is provided to the patient and family for treatments, disabilities, changes in lifestyle, and end-of-life issues. The patient and family are referred to resource and support services (e.g., social service, home health care agencies, the American Cancer Society, and other such voluntary agencies). Brenner tumorSee: Brenner tumorbrown tumorBuschke-Loewenstein tumorcalcifying epithelial odontogenic tumorPindborg tumor.carotid body tumorcollision tumorconnective tissue tumorDapaong tumordesmoid tumordysembryoplastic neuroepithelial tumorAbbreviation: DNETendocrine-inactive tumorerectile tumorEwing tumorSee: Ewing tumorfalse tumorfibroid tumorUterine leiomyoma.follicular tumorAn epidermoid cyst.functioning tumorgiant cell tumorgiant cell tumor of bonegiant cell tumor of tendon sheathgranulosa cell tumorgranulosa-theca cell tumorGubler tumorSee: Gubler, Adolpheheterologous tumorhomologous tumorHürthle cell tumorSee: Hürthle, Karl W.hilus cell tumorislet cell tumorKlatskin tumorSee: Klatskin tumorKrukenberg tumorSee: Krukenberg, Friedrich Ernstlipoid cell tumor of the ovarymast cell tumormelanotic neuroectodermal tumormesenchymal mixed tumormilk tumorPancoast tumorSee: Pancoast tumorpapillary tumorphantom tumorplacental site trophoblastic tumorAbbreviation: PSTTPindborg tumorSee: Pindborg tumorprimary tumorprimitive neuroectodermal tumorAbbreviation: PNETMedulloblastoma. Recklinghausen tumorSee: Recklinghausen, Friedrich D. vonsand tumorPsammoma.secondary tumorteratoid tumorturban tumoruterine tumor, tumor of the uterusvascular tumorHemangioma.Warthin tumorSee: Warthin tumorWilms tumorSee: Wilms tumorTumortu·mor(tū'mŏr) Avoid the jargonistic use of this word as a synonym of neoplasm.Synonym(s): tumour. Patient discussion about tumorQ. What is a brain tumor? Q. Is this a tumor? I felt a lump in my breast a few days ago in the shower. Is this a Tumor? Help! I'm scared. Q. what is carcinoid tumors? I had my appendix removed and the doctor came in the room very shocked and said it was full of carcinoid tumors. Im scared to get them somewhere else. tumortumor is not available in the list of acronyms. Check:
tumor
Synonyms for tumor
|
|||
随便看 |
|
英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。