释义 |
data mining
data miningn. The extraction of useful, often previously unknown information from large databases or data sets.data mining n (Computer Science) the gathering of information from pre-existing data stored in a database, such as one held by a supermarket about customers' shopping habits ThesaurusNoun | 1. | data mining - data processing using sophisticated data search capabilities and statistical algorithms to discover patterns and correlations in large preexisting databases; a way to discover new meaning in datadata processing - (computer science) a series of operations on data by a computer in order to retrieve or transform or classify information | Translationsdata mining
data mining[′dad·ə ‚mīn·iŋ or dād·ə ‚mīn·iŋ] (computer science) The identification or extraction of relationships and patterns from data using computational algorithms to reduce, model, understand, or analyze data. The automated process of turning raw data into useful information by which intelligent computer systems sift and sort through data, with little or no help from humans, to look for patterns or to predict trends. Data mining The development of computational algorithms for the identification or extraction of structure from data. This is done in order to help reduce, model, understand, or analyze the data. Tasks supported by data mining include prediction, segmentation, dependency modeling, summarization, and change and deviation detection. Database systems have brought digital data capture and storage to the mainstream of data processing, leading to the creation of large data warehouses. These are databases whose primary purpose is to gain access to data for analysis and decision support. Traditional manual data analysis and exploration requires highly trained data analysts and is ineffective for high dimensionality (large numbers of variables) and massive data sets. See Database management system A data set can be viewed abstractly as a set of records, each consisting of values for a set of dimensions (variables). While data records may exist physically in a database system in a schema that spans many tables, the logical view is of concern here. Databases with many dimensions pose fundamental problems that transcend query execution and optimization. A fundamental problem is query formulation: How is it possible to provide data access when a user cannot specify the target set exactly, as is required by a conventional database query language such as SQL (Structured Query Language)? Decision support queries are difficult to state. For example, which records are likely to represent fraud in credit card, banking, or telecommunications transactions? Which records are most similar to records in table A but dissimilar to those in table B? How many clusters (segments) are in a database and how are they characterized? Data mining techniques allow for computer-driven exploration of the data, hence admitting a more abstract model of interaction than SQL permits. Data mining techniques are fundamentally data reduction and visualization techniques. As the number of dimensions grows, the number of possible combinations of choices for dimensionality reduction explodes. For an analyst exploring models, it is infeasible to go through the various ways of projecting the dimensions or selecting the right subsamples (reduction along columns and rows). Data mining is based on machine-based exploration of many of the possibilities before a selected reduced set is presented to the analyst for feedback. data mining (database)Analysis of data in a database using tools whichlook for trends or anomalies without knowledge of the meaningof the data. Data mining was invented by IBM who hold somerelated patents.
Data mining may well be done on a data warehouse.
ShowCase STRATEGY is anexample of a data mining tool.data miningExploring and analyzing detailed business transactions. It implies "digging through tons of data" to uncover patterns and relationships contained within the business activity and history. Data mining can be done manually by slicing and dicing the data until a pattern becomes obvious. Or, it can be done with programs that analyze the data automatically. Data mining has become an important part of customer relationship management (CRM). In order to better understand customer behavior and preferences, businesses use data mining to wade through the huge amounts of information gathered via the Web. See data miner, Web mining, text mining, OLAP, decision support system, EIS, data warehouse and slice and dice.
| Doing It Automatically |
---|
This BusinessMiner analysis determined that the most influential factor common to non-profitable customers was their credit limit. (Image courtesy of SAP.) |
data mining
data mining The process of exploring and analysing databases to find previously unidentified patterns of data—popularly known as “hidden data”—which can be exploited for various purposes and produce new insights on outcomes, alternative treatments or effects of treatment on different populations.mining (mi'ning) [ME] 1. The extraction of useful information from a database. Synonym: data mining2. The extraction from the earth of materials with industrial value, such as coal, silver, or gold. Miners are exposed to various occupational disorders, including respiratory diseases (e.g., pneumoconiosis), allergies, and traumatic injuries. data miningMining (1).Data Mining
Data MiningThe practice of looking for a pattern in a large amount of seemingly random data. Data mining is usually done with a computer program and helps in marketing. That is, a company can look at the (publicly available) purchase patterns of a person or group of persons and determine what products to direct at them.AcronymsSeedemisterdata mining
Words related to data miningnoun data processing using sophisticated data search capabilities and statistical algorithms to discover patterns and correlations in large preexisting databasesRelated Words |