Coulomb explosion
Coulomb explosion
A process in which a molecule moving with high velocity strikes a solid and the electrons that bond the molecule are torn off rapidly in violent collisions with the electrons of the solid; as a result, the molecule is suddenly transformed into a cluster of charged atomic constituents that then separate under the influence of their mutual Coulomb repulsion. See Coulomb's law
Coulomb explosions are most commonly studied using a particle accelerator, normally employed in nuclear physics research (Van de Graaff generator, cyclotron, and so forth), to produce a beam of fast molecular ions that are directed onto a solid-foil target. The Coulomb explosion of the molecular projectiles begins within the first few tenths of a nanometer of penetration into the foil, continues during passage of the projectiles through the foil, and runs to completion after emergence of the projectiles into the vacuum downstream from the foil. Detectors located downstream make precise measurements of the energies and charges of the molecular fragments together with their angles of emission relative to the beam direction. The Coulomb explosion causes the fragment velocities to be shifted in both magnitude and direction from the beam velocity. See Particle accelerator
Coulomb explosion experiments serve two main purposes. First, they yield valuable information on the interactions of fast ions with solids. For example, it is known that a fast ion generates a polarization wake that trails behind it as it traverses a solid. This wake can be studied in detail by using diatomic molecular-ion beams, since the motion of a trailing fragment is influenced not only by the Coulomb explosion but also by the wake of its partner. Second, Coulomb-explosion techniques can be used to determine the stereochemical structures of molecular-ion projectiles. See Electron wake, Molecular structure and spectra